65 research outputs found

    Guidelines for key organizational factors for saas organizations

    Get PDF
    © 2019 Association for Computing Machinery. Software as a Service is a new model of software deployment where a provider licenses an application to customers for use as a service on demand. Due to benefits offered by it, organizations are transferring towards the SaaS delivery model. As compared to traditional organizations, SaaS organizations must consider key factors to stand out in a competitive market. This paper provides a better understanding of key factors for SaaS organization and provides guidelines for these key factors for SaaS organization. Ultimately, these guidelines will be valuable for SaaS vendors to improve SaaS application performance

    SPIRITS Catalog of Infrared Variables: Identification of Extremely Luminous Long Period Variables

    Get PDF
    We present a catalog of 417 luminous infrared variable stars with periods exceeding 250 days. These were identified in 20 nearby galaxies by the ongoing SPIRITS survey with the Spitzer Space Telescope. Of these, 359 variables have M[4.5]M_{[4.5]} (phase-weighted mean magnitudes) fainter than −12-12 and periods and luminosities consistent with previously reported variables in the Large Magellanic Cloud. However, 58 variables are more luminous than M[4.5]=−12M_{[4.5]} = -12, including 11 that are brighter than M[4.5]=−13M_{[4.5]} = -13 with the brightest having M[4.5]=−15.51M_{[4.5]} = -15.51. Most of these bright variable sources have quasi-periods longer than 1000 days, including four over 2000 days. We suggest that the fundamental period-luminosity relationship, previously measured for the Large Magellanic Cloud, extends to much higher luminosities and longer periods in this large galaxy sample. We posit that these variables include massive AGB stars (possibly super-AGB stars), red supergiants experiencing exceptionally high mass-loss rates, and interacting binaries. We also present 3.6, 4.5, 5.8 and 8.0 ÎŒ\mum photometric catalogs for all sources in these 20 galaxies.Comment: 18 pages, 25 figure

    Progenitor, Precursor and Evolution of the Dusty Remnant of the Stellar Merger M31-LRN-2015

    Get PDF
    M31-2015-LRN is a likely stellar merger discovered in the Andromeda Galaxy in 2015. We present new optical to mid-infrared photometry and optical spectroscopy for this event. The transient brightened by ∌3 mag as compared to its progenitor. The complex precursor emission, which started ∌2 years before the nova event, may be explained by the binary undergoing Roche-lobe overflow. The dynamical mass loss from the outer Lagrange point L2 creates an optically thick outflow to power the observed brightening of the system. We find two possible periods of 16±0.3 and 28.1±1.4 days at different phases of the precursor lightcurve, possibly related to the geometry of the mass-loss from the binary. Although the progenitor spectral energy distribution shows no evidence of pre-existing warm dust in system, the remnant forms an optically thick dust shell 2−4 months after the outburst peak. The optical depth of the shell increases after 1.5 years, suggesting the existence of shocks that enhance the dust formation process. We propose that the merger remnant is likely an inflated giant obscured by a cooling shell of gas with mass ∌0.2 M⊙ ejected at the onset of the common envelope phase

    Discovery and confirmation of the shortest gamma ray burst from a collapsar [Author Correction to: Nature Astronomy https://doi.org/10.1038/s41550-021-01428-7,]

    Get PDF
    Gamma-ray bursts (GRBs) are among the brightest and most energetic events in the universe. The duration and hardness distribution of GRBs has two clusters, now understood to reflect (at least) two different progenitors. Short-hard GRBs (SGRBs; T90 2 s) have been attributed to the collapse of peculiar massive stars (collapsars). The discovery of SN 1998bw/GRB 980425 marked the first association of a LGRB with a collapsar and AT 2017gfo/GRB 170817A/GW170817 marked the first association of a SGRB with a binary neutron star merger, producing also gravitational wave (GW). Here, we present the discovery of ZTF20abwysqy (AT2020scz), a fast-fading optical transient in the Fermi Satellite and the InterPlanetary Network (IPN) localization regions of GRB 200826A; X-ray and radio emission further confirm that this is the afterglow. Follow-up imaging (at rest-frame 16.5 days) reveals excess emission above the afterglow that cannot be explained as an underlying kilonova (KN), but is consistent with being the supernova (SN). Despite the GRB duration being short (rest-frame T90 of 0.65 s), our panchromatic follow-up data confirms a collapsar origin. GRB 200826A is the shortest LGRB found with an associated collapsar; it appears to sit on the brink between a successful and a failed collapsar. Our discovery is consistent with the hypothesis that most collapsars fail to produce ultra-relativistic jets

    The Hydrogen-Poor Superluminous Supernovae from the Zwicky Transient Facility Phase-I Survey: I. Light Curves and Measurements

    Full text link
    During the Zwicky Transient Facility (ZTF) Phase-I operation, 78 hydrogen-poor superluminous supernovae (SLSNe-I) were discovered in less than three years, making up the largest sample from a single survey. This paper (Paper I) presents the data, including the optical/ultraviolet light curves and classification spectra, while Paper II in this series will focus on the detailed analysis of the light curves and modeling. Our photometry is primarily taken by the ZTF in the g,r,ig,r,i bands, and with additional data from other ground-based facilities and Swift. The events of our sample cover a redshift range of z=0.06−0.67z = 0.06 - 0.67, with a median and 1σ1\sigma error (16\% and 84\% percentiles) zmed=0.265−0.135+0.143z_{\rm med} = 0.265^{+0.143}_{-0.135}. The peak luminosity covers −22.8 mag≀Mg,peak≀−19.8-22.8\,{\rm mag} \leq M_{g,\rm peak} \leq -19.8\,mag, with a median value of −21.48−0.61+1.13-21.48^{+1.13}_{-0.61}\,mag. Their light curves evolve slowly with the mean rest-frame rise time of trise=41.9±17.8t_{\rm rise} = 41.9\pm17.8\,days. The luminosity and time scale distributions suggest that low luminosity SLSNe-I with peak luminosity ∌−20\sim -20\,mag or extremely fast rising events (<10<10\,days) exist but are rare. We confirm previous findings that slowly rising SLSNe-I also tend to fade slowly. The rest-frame color and temperature evolution show large scatters, suggesting that the SLSN-I population may have diverse spectral energy distributions. The peak rest-frame color shows a moderate correlation with the peak absolute magnitude, i.e. brighter SLSNe-I tend to have bluer colors. With optical and ultraviolet photometry, we construct bolometric luminosity and derive a bolometric correction relation generally applicable for converting g,rg,r-band photometry to bolometric luminosity for SLSNe-I.Comment: 38 pages, 25 figures, Accepted by AP

    Discovery And Confirmation Of The Shortest Gamma-Ray Burst From A Collapsar

    Get PDF
    Gamma-ray bursts (GRBs) are among the brightest and most energetic events in the Universe. The duration and hardness distribution of GRBs has two clusters(1), now understood to reflect (at least) two different progenitors(2). Short-hard GRBs (SGRBs; T-90 \u3c 2 s) arise from compact binary mergers, and long-soft GRBs (LGRBs; T-90 \u3e 2 s) have been attributed to the collapse of peculiar massive stars (collapsars)(3). The discovery of SN 1998bw/GRB 980425 (ref. (4)) marked the first association of an LGRB with a collapsar, and AT 2017gfo (ref. (5))/GRB 170817A/GW170817 (ref. (6)) marked the first association of an SGRB with a binary neutron star merger, which also produced a gravitational wave. Here, we present the discovery of ZTF20abwysqy (AT2020scz), a fast-fading optical transient in the Fermi satellite and the Interplanetary Network localization regions of GRB 200826A; X-ray and radio emission further confirm that this is the afterglow. Follow-up imaging (at rest-frame 16.5 days) reveals excess emission above the afterglow that cannot be explained as an underlying kilonova, but which is consistent with being the supernova. Although the GRB duration is short (rest-frame T-90 of 0.65 s), our panchromatic follow-up data confirm a collapsar origin. GRB 200826A is the shortest LGRB found with an associated collapsar; it appears to sit on the brink between a successful and a failed collapsar. Our discovery is consistent with the hypothesis that most collapsars fail to produce ultra-relativistic jets

    Constraining the Kilonova Rate with Zwicky Transient Facility Searches Independent of Gravitational Wave and Short Gamma-Ray Burst Triggers

    Get PDF
    The first binary neutron star merger, GW170817, was accompanied by a radioactivity-powered optical/infrared transient called a kilonova. To date, no compelling kilonova has been found in all-sky optical surveys, independently of short gamma-ray burst and gravitational-wave triggers. In this work, we searched the first 23 months of the Zwicky Transient Facility (ZTF) data stream for candidate kilonovae in the form of rapidly evolving transients. We combined ZTF alert queries with forced point-spread-function photometry and nightly flux stacking to increase our sensitivity to faint and fast transients. Automatic queries yielded >11,200 candidates, 24 of which passed quality checks and selection criteria based on a grid of kilonova models tailored for both binary neutron star and neutron star–black hole mergers. None of the candidates in our sample was deemed a possible kilonova after thorough vetting. The sources that passed our selection criteria are dominated by Galactic cataclysmic variables. We identified two fast transients at high Galactic latitude, one of which is the confirmed afterglow of long-duration GRB 190106A, the other is a possible cosmological afterglow. Using a survey simulation code, we constrained the kilonova rate for a range of models including top-hat, linearly decaying light curves, and synthetic light curves obtained with radiative transfer simulations. For prototypical GW170817-like kilonovae, we constrain the rate to be R < 1775 Gpc⁻³ yr⁻Âč (95% confidence). By assuming a population of kilonovae with the same geometry and composition of GW170817 observed under a uniform viewing angle distribution, we obtained a constraint on the rate of R < 4029 Gpc⁻³ yr⁻Âč

    Constraining the Kilonova Rate with Zwicky Transient Facility Searches Independent of Gravitational Wave and Short Gamma-ray Burst Triggers

    Get PDF
    The first binary neutron star merger, GW170817, was accompanied by a radioactivity-powered optical/infrared transient called a kilonova. To date, no compelling kilonova has been found during optical surveys of the sky, independent of gravitational-wave triggers. In this work, we searched the first 23 months of the Zwicky Transient Facility (ZTF) data stream for candidate kilonovae in the form of rapidly evolving transients. We combined ZTF alert queries with forced point-spread-function photometry and nightly flux stacking to increase our sensitivity to faint and fast transients. Automatic queries yielded >11,200>11,200 candidates, 24 of which passed quality checks and strict selection criteria based on a grid of kilonova models tailored for both binary neutron star and neutron star-black hole mergers. None of the candidates in our sample was deemed a possible kilonova after thorough vetting, catalog cross-matching, and study of their color evolution. The sources that passed our selection criteria are dominated by Galactic cataclysmic variables. In addition, we identified two fast transients at high Galactic latitude, one of which is the confirmed afterglow of long-duration GRB190106A, and the other is a possible cosmological afterglow. Using a survey simulation code, we constrained the kilonova rate for a range of models including top-hat and linearly decaying light curves and synthetic light curves obtained with radiative transfer simulations. For prototypical GW170817-like kilonovae, we constrain the rate to be R<1775R < 1775 Gpc−3^{-3} yr−1^{-1} at 95% confidence level by requiring at least 2 high-significance detections. By assuming a population of kilonovae with the same geometry and composition of GW170817 observed under a uniform viewing angle distribution, we obtained a constraint on the rate of R<4029R < 4029 Gpc−3^{-3} yr−1^{-1}.Comment: Submitted for publication in Ap
    • 

    corecore